

Grade 11/12 Math Circles

November 23, 2022

Generating Functions - Problem Set

- 1. Create combinatorial classes (including a set and weight function) to represent the following:
 - (a) Rolling a regular 8-sided die.
 - (b) Choosing some number of 5 cent coins from an infinitely large pile.
 - (c) Drawing a card from a deck with four of each numbered card 1-10.
- 2. Find the generating functions for the following combinatorial classes:
 - (a) 0-1 strings of length two with a weight function of the number of 1's in the string.
 - (b) One roll of 2 regular 4-sided dice, where the weight function is the sum of the values rolled.
 - (c) 0-1 strings of length 4 with a weight function of the number of occurrences of 01.
- 3. For $F(z) = 1 + 3z + 6z^2 + 10z^3 + 15z^4 + 21z^5 + 28z^6 + \dots$, determine:
 - (a) $[z^0]F(z)$
 - (b) $[z^3]F(z)$
 - (c) $[z^9]F(z)$
 - (d) $[z^n]F(z)$
- 4. Write the following generating functions as simply as possible:
 - (a) $F(z) = 2z^2 + 4z^3 + 8z^4 + 16z^5 + 32z^6 + \dots$
 - (b) $G(z) = 1 + z^2 + z^4 + z^6 + z^8 + \dots$
 - (c) $H(z) = z + 3z^3 + 9z^5 + 27z^7 + 81z^9 + \dots$
- 5. Find a generating function for 0-1 strings beginning with 11 and ending with 0, where the weight function is the length of the string.
- 6. Consider the combinatorial class of 0-1 strings beginning with 101 and ending with 10, with a weight function corresponding to the length of the string.
 - (a) Using a method similar to Example: Multiplication 2 from the lesson, find a generating function for this combinatorial class.
 - (b) How many 0-1 strings of length four start with 101 and end in 10? Is the actual answer the same as in the generating function from part a?
 - (c) Challenge: If they are different, why might that be? How could it be fixed?

CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

- 7. Find an expression for the number of ways to make \$2.65 in change (with 5, 10 and 25 cent coins available, as well as 1 and 2 dollar coins).
- 8. Find 2 four-sided dice such that:
 - Each side has a positive integer number of dots
 - The two dice are not the same
 - The probability of rolling a sum of $2, \ldots, 8$ on these dice is the same as the probabilities for regular four-sided dice

Hint:
$$(z + z^2 + z^3 + z^4)^2 = (z^2 + 1)^2(z + 1)^2z^2$$

9. Challenge: Find a generating function for the following combinatorial class:

Set: Ordered lists of length three, where each entry is a positive integer.

Weight Function: Sum of the integers in the given ordered list.

Example: (2,3,1) has a weight of 2+3+1=6.